Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase.
نویسندگان
چکیده
Increased blood-brain barrier (BBB) Na-K-Cl cotransporter activity appears to contribute to cerebral edema formation during ischemic stroke. We have shown previously that inhibition of BBB Na-K-Cl cotransporter activity reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of ischemic stroke. We have also shown that the BBB cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), although the mechanisms responsible are not well understood. AMP-activated protein kinase (AMPK), a key mediator of cell responses to stress, can be activated by a variety of stresses, including ischemia, hypoxia, and aglycemia. Previous studies have shown that the AMPK inhibitor Compound C significantly reduces infarct in mouse MCAO. The present study was conducted to evaluate the possibility that AMPK participates in ischemic factor-induced stimulation of the BBB Na-K-Cl cotransporter. Cerebral microvascular endothelial cells (CMEC) were assessed for Na-K-Cl cotransporter activity as bumetanide-sensitive (86)Rb influx. AMPK activity was assessed by Western blot analysis and immunofluorescence methods using antibodies that detect total versus phosphorylated (activated) AMPK. We found that hypoxia (7% and 2% O(2)), aglycemia, AVP, and oxygen-glucose deprivation (5- to 120-min exposures) increase activation of AMPK. We also found that Compound C inhibition of AMPK reduces hypoxia-, aglycemia-, and AVP-induced stimulation of CMEC Na-K-Cl cotransporter activity. Confocal immunofluorescence of perfusion-fixed rat brain slices revealed the presence of AMPK, both total and phosphorylated kinase, in BBB in situ of both control and ischemic brain. These findings suggest that ischemic factor stimulation of the BBB Na-K-Cl cotransporter involves activation of AMPK.
منابع مشابه
Ischemia-induced stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransport involves p38 and JNK MAP kinases.
Previous studies have provided evidence that, in the early hours of ischemic stroke, a luminal membrane blood-brain barrier (BBB) Na-K-Cl cotransporter (NKCC) participates in ischemia-induced cerebral edema formation. Inhibition of BBB NKCC activity by intravenous bumetanide significantly reduces edema and infarct in the rat permanent middle cerebral artery occlusion model of ischemic stroke. W...
متن کاملArginine vasopressin stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransporter activity is V1 receptor and [Ca] dependent.
Ischemia-induced brain edema formation is mediated by increased transport of Na and Cl across an intact blood-brain barrier (BBB). Our previous studies have provided evidence that a luminally located BBB Na-K-Cl cotransporter is stimulated during cerebral ischemia to increase transport of Na and Cl into the brain. The main focus of the present study was to evaluate the effects of arginine vasop...
متن کاملIschemic factor-induced increases in cerebral microvascular endothelial cell Na/H exchange activity and abundance: evidence for involvement of ERK1/2 MAP kinase.
Brain edema forms rapidly in the early hours of ischemic stroke by increased secretion of Na, Cl, and water into the brain across an intact blood-brain barrier (BBB), together with swelling of astrocytes as they take up the ions and water crossing the BBB. Our previous studies provide evidence that luminal BBB Na-K-Cl cotransport (NKCC) and Na/H exchange (NHE) participate in ischemia-induced ed...
متن کاملModerate-to-severe ischemic conditions increase activity and phosphorylation of the cerebral microvascular endothelial cell Na+-K+-Cl- cotransporter.
Brain edema that forms during the early stages of stroke involves increased transport of Na+ and Cl- across an intact blood-brain barrier (BBB). Our previous studies have shown that a luminal BBB Na+-K+-Cl- cotransporter is stimulated by conditions present during ischemia and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema formation in the rat middle cerebra...
متن کاملDopamine D1 stimulation of Na+,K+,Cl- cotransport in human NPE cells: effects of multiple hormones.
PURPOSE To determine the effects of dopamine on Na+,K+,Cl- cotransport in human ciliary nonpigmented epithelial (NPE) cells. METHODS The authors used 86Rb+ as a marker for K+ to study ouabain-insensitive, bumetanide-sensitive 86Rb+ uptake in cultured fetal human NPE monolayers. RESULTS Na+,K+,Cl- cotransport was stimulated 1.63-fold by 10 microM dopamine. Stimulation was dose dependent, wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 301 2 شماره
صفحات -
تاریخ انتشار 2011